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 Widespread use of energy-economy-environment system models 
 Energy security and climate change: insights regarding the cost and benefit of policy 

objective and system effects 
 These models grow bigger and bigger 

 Sectoral and geographical coverages, coupling with other models, Higher level of 
details/complexity… 

 And are subject to criticisms (too complex, validation issue, hidden values issue) 

 The main criticism: uncertainty handling (Pindyck, 2013) 

 Uncertainty treatment 
 Uncertainty not considered because of model size & complexity 
 A polymorphous uncertainty:  

 growth, technical parameters, backstop technology, climate system… 

 Methods 
 Exogenous ways 

 Extensive scenario analysis (Babaee et al, 2014) 
 Sensitivity analysis (Hope, 2006) 
 Monte Carlo analysis (MIT 2011) 

 Endogenous ways 
 Stochastic programming (requires density functions) 
 Robust optimization : set-based uncertainty models, large cardinalities allowed (distributional 

robustness) (Babonneau et al, 2011) 
 

 
 
 
 

 
 

CONTEXT 
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 Small Climate models deriving from Global Circulation Models and/or Earth System 
Models of Intermediate Complexity (Van Vuuren et al, 2009) 

 

 

 

 

 

 

 

 

 

 

 

 

 Lots of approximations / calibration methods which can impact the model results 

 Idea: assess the robustness of the model to climate parameters uncertainty and 
understand which parameters or combination of parameters are the most sensitive 

 Problem: a classic sensitivity study would take too long (with 10 parameters to study 
and only 2 values for each parameters, more than 1000 runs) 

 Hence the use of robust optimization 
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 Principle 

 Immunize solutions of mathematical programs to adverse realizations 
of uncertain coefficients 

  Initial approach  

 Soyster (1973): pessimistic « worst-case » solution 

  Many improvements since the end of 90s 

 New formalisms (quadratic…) : El-Gahoui et al (1998); Ben-Tal and 
Nemirovski (2002) 

 Lots of efforts on linear formulations: Bertsimas and Sim (2004) – 
generalization of Soyster’s approach 

 Ongoing extensions to general constraints (Ben-Tal et al, 2012) 

     Very well established results for LP 

ROBUST OPTIMIZATION: what is it?  
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 Nominal LP problem 

 (P)  
min 𝐶𝑇𝑥

𝑠. 𝑡.  𝐴𝑥 ≤ 𝑏
𝑥 ∈ ℝ𝑛

+, 𝑏 ∈ ℝ𝑚
 

 Some parameters are uncertain, we 
assume they deviate in the 
“uncertainty set” 

 𝑎𝑖,𝑗 ∈ 𝑎𝑖,𝑗 − 𝑎𝑖,𝑗 ,𝑎𝑖,𝑗 + 𝑎𝑖,𝑗 ,   
𝑎𝑖,𝑗=𝑎𝑖,𝑗+𝑧𝑖,𝑗  𝑎𝑖,𝑗   ,  𝑧𝑖,𝑗 ∈ −1, 1  

 The “worst” case is unlikely hence: 
 𝑧𝑖,𝑗𝑗 ≤ Γ𝑖, Γ: uncertainty budget 

 (Prob) 

min 𝐶𝑇𝑥
𝑠. 𝑡. 

 𝑎𝑖,𝑗𝑗 𝑥𝑗+max
𝑧 𝑖,𝑗

 𝑧 𝑖,𝑗𝑎𝑖,𝑗 𝑗 𝑥𝑗 ≤ 𝑏𝑖

𝑧𝑖,𝑗 ∈ −1, 1       (𝜇)

 𝑧𝑖,𝑗𝑗 ≤ Γ𝑖     (𝜆)

𝑥 ∈ ℝ𝑛
+, 𝑏 ∈ ℝ𝑚

 

ROBUST OPTIMIZATION: what is it? 

 Primal deviation problem 

 (P2) 

max
𝑧 𝑖,𝑗

 𝑧 𝑖,𝑗𝑎𝑖,𝑗 𝑗 𝑥𝑗

𝑧𝑖,𝑗 ∈ 0, 1   (𝜇)

 𝑧𝑖,𝑗𝑗 ≤ Γ𝑖(𝜆)

𝑥 ∈ ℝ𝑛
+, 𝑏 ∈ ℝ𝑚

 

 Dual deviation problem 

 (D2)  

min Γ𝑖𝜆 +  𝜇𝑖,𝑗𝑗

𝑠. 𝑡.  𝜆 + 𝜇𝑖,𝑗 ≥ 𝑎𝑖,𝑗 𝑥𝑗
𝜇𝑖,𝑗 ∈ ℝ+, 𝜆 ∈ ℝ+

 

 Using strong duality arguments 

 (Prob) 

min 𝐶𝑇𝑥
𝑠. 𝑡. 

 𝑎𝑖,𝑗𝑗 𝑥𝑗+Γ𝑖𝜆 +  𝜇𝑖,𝑗𝑗 ≤ 𝑏𝑖
𝜆 + 𝜇𝑖,𝑗 ≥ 𝑎𝑖,𝑗 𝑥𝑗
𝜇𝑖,𝑗 ∈ ℝ+, 𝜆 ∈ ℝ+

𝑥 ∈ ℝ𝑛
+, 𝑏 ∈ ℝ𝑚
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 Input-based reasons 

 Tackling the computational burdens 
of large bottom-up IAMs 

 

 

 

 

 

 Being able to consider a lot of 
parameters at the same time 

Why using this methodology? 

 Output based reasons 

 Proposing alternative model of 
uncertainty within IAMS 

 

 

 

 

 

 Obtaining trajectories robust to 
most parameter realizations 

 

 Other potential applications 

 Cost uncertainty, technical parameter uncertainty, demand uncertainty 
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 The TIMES climate module is adapted from Nordhaus & Boyer (1999) (Loulou et al, 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 9 parameters calibrated with more complex climate models (e.g. MAGICC)  

Application with the TIAM-World model 

Parameters  
 Carbon cycle: ϕau , ϕua ,ϕlu , ϕul annual 

CO2 flow coefficients between the three 
reservoirs 

 Radiative forcing: γ is the radiative forcing 
sensitivity to a doubling of the atmospheric 

 Temperature 
 σ1 : speed of adjustment parameter for 

atmospheric temperature. 

 σ2  : ratio of the thermal capacity of the 
deep oceans to the transfer rate from 
shallow to deep ocean  

 σ3  : transfer rate (per year) from the 
upper level of the ocean to the deep 
ocean  

 CS: a feedback parameter, representing 
the equilibrium impact of CO2 
concentration doubling on climate. 
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 Set 1: 10% set  
 Simple: Parameters can deviate of 10% 

of their nominal value 

 𝑎𝑖,𝑗 ∈ 𝑎𝑖,𝑗 − 0.1𝑎𝑖,𝑗 , 𝑎𝑖,𝑗 + 0.1𝑎𝑖,𝑗  

 

 

 

Experimental setting 

 Set 2: literature set 
 Use deviation values found in literature 

 Difficulty to find homogenous data for all 
parameters 

 

 Climate constraint: 3°C over the whole 2010-2200 horizon (no 
overshoot) 

 2 sets of climate parameter deviations 
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Parameters Value Deviation 

10% Literature 

ϕau 0.046 10% 3.5% 

ϕua 0.0453 10% 3.5% 

ϕlu 0.00053 10% 3.5% 

ϕul 0.0146 10% 3.5% 

σ1 0.024 10% 13% 

σ2 0.44 10% 10% 

σ3 0.002 10% 10% 

CS 2.9 10% 50% 

γ 3.71 10% 21% 



 Uncertainty set: literature 

Most sensitive parameters 
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 Uncertainty set: 10% 

Deviation ϕau CS ϕua ϕlu ϕul σ1 σ2 σ3 γ 

10% 1 2 3 5 4 7 6 9 6 

Literature 3 1 4 7 5 2 3 9 8 

Parameter deviation order 



CO2 Captured 

10 



Primary energy 
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 Use of robust optimization for large bottom-up model with non-
linear constraint 

 Need to be careful with Small Climate Model results given the 
parameter diversity across models 

 Adapt calibration? Generalize sensitivity study? 

 

 Next step: going further with the robust optimization 
methodology. Trying to understand how we can interpret the 
robust trajectories (hedging, attitude towards risk…). 

Conclusion 
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 Implementation obstacle 

 The climate module is not linear in the parameters: 
 We linearized it using binary variables, the problem becomes a MIP  

 Implementation of a column and constraint generation algorithm using a MIP oracle 

 

Application with the TIAM-World model 

Master 
Problem 

TIAM-World 
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Max climate 
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Times climate module 
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The TIAM Model 

• A multi-regional and inter-

temporal partial equilibrium 

model of the entire 

energy/emission system of 

the World 

• 16 Regions 

• Driven by a set of 42 

demands for energy services 

in all sectors 



Cost of robustness 
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 Use of a recent technique developed in the operations research 
field: robust optimization. Application to tackle the climate 
module parameter uncertainty. 

 This technique allows to derive robust trajectories 

 And to highlight the most sensitive parameters or parameter 
combinations.   

 

 

Contributions 
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